Check for updates





Blood 142 (2023) 153-155

The 65th ASH Annual Meeting Abstracts

## **ORAL ABSTRACTS**

### 203.LYMPHOCYTES AND ACQUIRED OR CONGENITAL IMMUNODEFICIENCY DISORDERS

**Biallelic PI4KA mutations Disrupt B Cell Mitochondrial Metabolism and Cause Hypogammaglobulinemia** Francesco Saettini, MD<sup>1</sup>, Fabiola Guerra<sup>2,3,4</sup>, Mario Mauri, PhD<sup>5</sup>, Grazia Fazio, PhD<sup>6</sup>, Cristina Bugarin, MSc<sup>7</sup>, Manuel Quadri<sup>2</sup>, Stefano Rebellato<sup>7,4</sup>, Clizia Chinello<sup>4</sup>, Lisa Pagani<sup>4</sup>, Federica Malighetti, MS<sup>5</sup>, Luis González Gutiérrez-Solana<sup>8</sup>, Vanna Denti<sup>4</sup>, Fatemeh Emam Mousavi<sup>9,10</sup>, Miquell Raspall-Chaure<sup>11</sup>, Martin-Nalda Andrea<sup>12</sup>, Estibaliz Barredo<sup>13</sup>, David Adams<sup>14</sup>, O'Leary Melanie<sup>15</sup>, Precilla D'Souza<sup>14</sup>, Ellen Macnamara<sup>14</sup>, Sergio Rosenzweig<sup>16</sup>, Hye Sun Kuehn<sup>16</sup>, Jennifer Stoddard<sup>16</sup>, Heather C Mefford<sup>17</sup>, Giorgia Mandrile<sup>18</sup>, Lisa Pavinato<sup>19</sup>, Alfredo Brusco<sup>19,20</sup>, Patricia Valentina Velez Santamaria<sup>21</sup>, Aurora Pujol<sup>21</sup>, Vincent Michaud<sup>22</sup>, Agathe Roubertie<sup>23</sup>, Zoe Nelson<sup>24</sup>, Margaret P Adam<sup>25</sup>, Bernice Lo<sup>26</sup>, Holm Uhlig<sup>27,28,29</sup>, Claire G Salter<sup>30,31</sup>, Emma Baple<sup>31,32</sup>, Andrew H Crosby<sup>31</sup>, Sanil Bhatia, PhD<sup>33</sup>, Fulvio Magni<sup>4</sup>, Giuseppe Paglia<sup>4</sup>, Giovanni Cazzaniga, PhD<sup>4,34</sup>, Rocco Piazza, MD PhD<sup>35</sup>, Andrea Biondi, MD<sup>36,3,4</sup>, Matteo Barberis<sup>10,37,38</sup>

<sup>1</sup>Centro Tettamanti, IRCCS San Gerardo dei Tintori, Monza, Italy

<sup>2</sup>Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, ITA

- <sup>3</sup>Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- <sup>4</sup>Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy

<sup>5</sup>Department of Medicine and Surgery, University of Milano-Bicocca, Monza, ITA

<sup>6</sup>Tettamanti Research Center, Monza, ITA

<sup>7</sup> Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy

<sup>8</sup>Hospital Infantil Niño Jesús, Madrid, España or Infant Jesus Children's Hospital, Madrid, Spain

<sup>9</sup>Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

<sup>10</sup>Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom

<sup>11</sup>Department of Paediatric Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain

<sup>12</sup>8. Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain

<sup>13</sup>Neuropediatric Department, Hospital Universitario Gregorio Marañón, Madrid, Spain

<sup>14</sup>NIH Undiagnosed Diseases Program, NIH, Bethesda

<sup>15</sup>11. Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge

<sup>16</sup>Immunology Service, DLM, NIH Clinical Center, Bethesda

<sup>17</sup> Division of Genetic Medicine, Department of Paediatrics, University of Washington, Seattle

<sup>18</sup>14. Genetic Unit and Thalassemia Center, San Luigi Gonzaga University Hospital, Orbassano, Italy

<sup>19</sup>Department of Medical Sciences, University of Turin, Torino, Italy

<sup>20</sup>Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy

<sup>21</sup>Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain

<sup>22</sup>18. Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, Aquitaine, France. INSERM U1211, Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Talence, FRA

<sup>23</sup>19. Département de Neuropédiatrie, CIC, CHU de Montpellier, INM, Univ Montpellier, INSERM U 1298, Montpellier, France

<sup>24</sup>Vascular Anomalies Program, Seattle Children's Hospital, Seattle

- <sup>25</sup>Genetic Medicine, Department of Pediatrics, University of Washington, Seattle
- <sup>26</sup>College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- <sup>27</sup> Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- <sup>28</sup>Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom

<sup>29</sup>University of Oxford, Oxford, GBR

#### ORAL ABSTRACTS

<sup>30</sup>Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom

- <sup>31</sup> RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, United Kingdom
- <sup>32</sup>Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, United Kingdom

<sup>33</sup>Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical faculty, Heinrich Heine University Düsseldorf, Duesseldorf, Germany

<sup>34</sup>Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy

<sup>35</sup>Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy

<sup>36</sup>Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy

<sup>37</sup>4. Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

<sup>38</sup> Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands

#### Introduction

Biallelic mutations in the *PI4KA* gene cause PI4KA-related disorder, a novel condition with neurological (limb spasticity, developmental delay, intellectual disability, seizures, ataxia, nystagmus), gastrointestinal (GI; inflammatory bowel disease [IBD] and multiple intestinal atresia [MIA]) and immunological manifestations. *PI4KA* encodes phosphatidylinositol (PI) 4-kinase alpha, which catalyzes the first step of phosphoinositide metabolism, phosphorylating PI to PI4P (phosphatidylinositol 4-phosphate). Phosphoinositides collectively have fundamental signalling roles in the plasma membrane and other organelles. We collected comprehensive clinical and laboratory data on 13 patients and performed a multiomic strategy, combining transcriptome, proteome, lipidome and metabolome analyses of three patients' EBV-transformed cell lines to unravel the burden of B cell deficiency in PI4KA-related disorder and define the role of PI4KA in B cells.

#### Results

Recurrent or severe infections (8/13) and GI (either gastroesophageal reflux disease, MIA or IBD; 6/13) manifestations were frequent. Thyroid disease (either hypo- or hyperthyroidism; 2/13), juvenile idiopathic arthritis (JIA; 1/13) and non-Hodgkin lymphoma (1/13) were reported. At last follow up 11 patients were alive. Ten had either hypogammaglobulinemia, decreased absolute numbers of B cells or decreased B cell subsets. B cell subsets showed increased transitional (4/7), decreased naive (2/7) and decreased switched memory (4/7) B cells. B cell proliferation to T independent mitogens, specifically IgM + CpG or pokeweed, was impaired in 2/2. T-cell (either CD3+, CD4+ or CD8+) lymphopenia was detected in 4/13. T-cell proliferation was maintained in 5/5. NK cells were decreased in 6/13. Ig replacement therapy (4/13) and immunosuppressive treatment (due to JIA [1/13] or IBD [2/13]) were given.

Lipidome analysis showed that different glycerophospholipids profile (i.e., phosphatidylcholine [PC], phosphatidylethanolamines [PE] and phosphatidylserine [PS]) was altered. Metabolome analysis and pathway enrichment analysis confirmed impaired phosphatidylethanolamine biosynthesis and additionally showed altered PIP metabolism and mitochondrial dysfunction (i.e., beta-oxidation of short and long fatty acids). Although the total number of mitochondria was not affected, the mitochondrial activity was significantly reduced. Integration analyses of proteomics, metabolomic and lipidomic data reveals biochemical mechanisms underlying biallelic PI4KA mutation. In particular, dysregulation of metabolic enzymes and pathways involved in glutathione metabolism and tricarboxylic acid cycle was found (Fig. 1). These metabolic impairments ultimately impacted on oxidative phosphorylation, thus disrupting mitochondrial integrity.

Gene set enrichment analysis of differentially expressed genes suggested a skewing towards naive B cell gene sets. Pathways enrichment analysis of transcriptome and proteome showed enrichment in B cell receptor (BCR) pathway and complex, PI3K/mTOR pathway and phospholipids metabolism. PI4P and its metabolite PI(4,5)P2 are determinants of PM identity, specifically controlling cytoskeletal dynamics. Deranged basal actin organization was reverted after anti-IgM stimulation. Hyperactivation of PI3K targets (pAKT473, p4EBP1 and pS6) was observed. Dysregulation of *RABGAP1*, *RAB8B* and *LAMP3* mRNA prompted us to investigate autophagy. Indeed, LC3 was increased either in the presence or absence of chloroquine, showing that *PI4KA* mutations enhanced autophagosome formation and inhibited its degradation.

#### Conclusion

Overall, by altering the production of several key lipids, biallelic *PI4KA* mutations disrupt B cell metabolism causing mitochondrial dysfunction, mTOR hyperactivation, increased autophagy and deranged cytoskeleton organization. PI4KA-related disorder is a novel syndromic inborn error of immunity causing B cell deficiency and hypogammaglobulinemia.

# Figure 1. Integration of proteomics, metabolomics and lipidomics reveals biochemical mechanisms underlying biallelic *PI4KA* mutations.

**Disclosures Biondi:** Agmen: Speakers Bureau; Novartis: Speakers Bureau; Colmmune: Membership on an entity's Board of Directors or advisory committees, Research Funding; Galapagos: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees.

https://doi.org/10.1182/blood-2023-185551

blood<sup>®</sup> 2 NOVEMBER 2023 | VOLUME 142, NUMBER Supplement 1

155



**Differentially Regulated Proteins** 

— PI4K- mutated in Patients

Lipid Metabolism

**Inositol Phosphate** Metabolism

Glycerophospholipid Metabolism

. .

- **Upregulated in Patients**
- **Downregulated in Patients**

Differentially Regulated Metabolites and Lipids

- Upregulated in Patients ≥1.5 fold
- Downregulated in Patients ≥ 1.5 fold
- Upregulated in Patients < 1.5 fold</p>
- Downregulated in Patients <1.5 fold</p>

Figure 1

TCA Cycle